
Journal of Advance Research in Applied Science (ISSN 2208-2352) 

Volume-11 | Issue-01 | Apr, 2025 18 

 

 

 
DOI: https://doi.org/10.61841/vpsn4w60 PUBLICATION URL: https://nnpub.org/index.php/AS/article/view/2796 

THE STANDARD COSMOLOGICAL MODEL: BASIC GEOMETRIC 

AND KINEMATIC FEATURES 

Dmitrij I. Nagirner1, Svetlana G. Jorstad2, A. V. Dementyev1 

 
1Astronomy Department, St. Petersburg State University, Universitetskij Pr. 28, Petrodvorets, 198504 St. Petersburg, 

Russia (dinagirner@gmail.com) 
2Institute for Astrophysical Research, Boston University, 725 Commonwealth Ave., Boston, MA, 02215, USA 

(jorstad@bu.edu) 

 

To cite this article: 

Nagirner, D., Jorstad, S., & Andrey V. Dementyev. (2025). The Standard Cosmological Model:Basic 

Geometric and Kinematic Features. Journal of Advance Research in Applied Science (ISSN 2208-

2352), 11(1). https://doi.org/10.61841/vpsn4w60 
 

 

 

 

 

 

ABSTRACT 
We present a brief history of the construction of models of the universe, followed by calculations of quantitative 

characteristics of basic geometric and kinematic properties of the Standard Cosmological Model (𝚲CMM). ssing the 

Friedmann equations of uniform space, we derive equations characterizing a 𝚲CMM model that describes a universe 

corresponding to current observational data. The equations take into account the effects of radiation and ultra-relativistic 

neutrinos. It is shown that the universe at very early and late stages can be described to sufficient accuracy by simple 

formulas. Certain important moments of cosmic evolution are determined: the times when densities of the gravitational 

components of the universe become equal, when they contribute equally to the gravitational force, when the accelerating 

expansion of space begins, and several others. The dependences of different distances on redshift and the scale factor of 

space are derived. The distance to the sphere that expands with the speed of light (the Hubble distance), and its current 

and future acceleration, are found. Concepts of a horizon, second inflation, and second horizon are discussed. We consider 

the remote future of the universe and the opportunity, in principle, of connection with extraterrestrial civilizations. 
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INTRODUCTION 
We present a brief history of the construction of cosmological models, starting with the models of A. Einstein, V. de Sitter, 

A. Friedmann, and J. Lemaître, and describe observational attempts to choose model parameters such as the Hubble 

constant and the sign of curvature of space-time. We follow the evolution of understanding of the role of the cosmological 

constant from its (1) introduction by Einstein to compensate for gravitational attraction, (2) later near-elimination from 

the theory, (3) association with some substance, and (4) recognition of this substance as the main component of the 

universe, currently named “dark energy,” that defines the acceleration of the expansion of space. All of these, along with 

ongoing technological progress, have led to the formulation of the so-called “Standard” model, which is the model that 

most adequately describes the existing universe. 

We use the metric of Friedmann-Robertson-Walker and equations of Friedmann-Lemaître, which form the 

foundation of the majority of the models. We recall the definition of the “critical density” and discuss the densities of four 

noninteracting components of the universe: dark energy, dust matter, which includes baryonic and dark matter, radiation, 

and ultrarelativistic neutrinos. We derive the laws of evolution of the density of these components. Inclusion of these 

components allow to obtain the general solution of the equations while highlighting the case of flat space-time. 

We consider the problem of the propagation of radiation in the universe from a source to the observer, a term of 

the geometrical horizon that arises in this case, and discuss different concepts of distances in the universe. The relationship 

between a time derivative of the metric distance, interpreted as the speed of expansion, and the distance itself — the 

Hubble-Lemaître law — and redshift is given. We explain why the cosmological redshift is not similar to the classic 

Moppler effect. 

We adopt the modern parameters of the Standard model: the temperature of the cosmic microwave background 

(CMB), the temperature of neutrino gas associated with the CMB, the Hubble constant, and a share of dark energy in the 

total density. These parameters allow us to calculate analytically the evolution of the mass density of the four components 

and their relative contributions to the critical density, which are employed to specify relations between scale characteristics 

of the model and time. We derive approximate formulas of these relations at the initial and remote-future epochs of 

expansion. The evolution of a role of the components at different epochs is analysed and values of distances, speeds, and 

accelerations as functions of redshift are calculated. We estimate a duration of the time interval needed to detect a change 

of the redshift and apparent luminosity of a remote object with time. 

The reasons for the existence of a second inflation and a second horizon are explained. Mistances to the horizons 

and to the place where the rate of expansion is equal to the speed of light (the Hubble distance) are determined along with 

their speeds and accelerations. Finally, we discuss whether a connection with extraterrestrial civilizations can be 

established in principle. 

Based on the Standard model, the anisotropy of the cosmic microwave background, primary nucleosynthesis, and 

the formation of large-scale structures in the universe are reproduced quite accurately, as is presented in well known 

monographs, for example, [1-5]. Here we provide an overview of the geometric and kinematic properties of the modern 

Standard cosmological model. 

STAGES OF BUILDING A MODEL 

The path to the construction of a cosmological model, now known as the Standard model or 𝚲CMM, was quite 

long. The history of this path is described in many cosmology textbooks. Here we summarize the main stages of this 

history. 

The intention to build a cosmological model, that is, a model of the entire universe, and not only the solar system 

or the Galaxy, appeared as soon as A. Einstein (1917) has formulated the equations of the general theory of relativity [7] 

(1916), which describe gravitational fields and the behavior of matter in them. He applied the equations to the 

homogeneous and isotropic distribution of matter (following the “cosmological principle”) and tried to find a stationary 

solution of these equations to avoid problems of an origin and initial ultra-dense stages in the history of the universe. To 

achieve this, he had to supplement the equations with the cosmological term, so-called cosmological constant, or 𝚲 
parameter [7], which corresponds not to gravitational attraction, but to repulsion. The stationary solution was obtained 

only for a closed universe and, moreover, as A. Eddington showed [8], turned out to be unstable. 
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Another stationary solution was obtained by de Sitter [9] (1917) also for a closed universe, but not containing 

matter (empty space). In this model, the passage of time at a certain point of space depends on the distance to this position 

from the observer. The redshift of the spectrum of a remote object was explained by the fact that a clock around it was 

running more slowly than that of an observer on the Earth. According to this theory, the radius of the curvature of space 

that does not change with time, 𝑅 = 𝑅0, is directly connected with the cosmological constant: 𝚲 = 3/𝑅2. This model has 

prompted numerous works on the study of the "de Sitter World" itself, in which properties of the symmetry of space in 

different coordinates (see the references in [8]) were considered. In fact, these works are more of a mathematical character 

than of cosmological insight, although they deal with some astronomical aspects and observed values (speeds of galaxies, 

size of universe, etc.). 

The first non-stationary solutions of the Einstein equations were obtained by a Russian mathematician, fluid 

mechanician, and meteorologist A. A. Friedmann (1888–1925) for a matter without pressure, uniformly distributed in 

space, first with a positive curvature [10] (1922), then with a negative curvature [11] (1924). In these works he also studied 

cases with positive and negative values of the cosmological constant. 

The Belgian theorist G. Lemaître (1894–1966) also obtained non-stationary solutions [12] in 1927, not knowing 

about the works by Friedmann (when reprinting the article in English, he mentioned the Friedmann work [10]). Lemaître 

was the first who included radiation as a component of the universe and analytically derived the Hubble law ahead of its 

observational discovery (now this law is called the Hubble—Lemaître law). The idea of the Big Bang at the beginning of 

the expansion of the universe belongs to Lemaître as well [13]. 

As for the cosmological constant, Einstein first doubted the need for its introduction [14], and completely 

abandoned it when non-stationary solutions of the equations were obtained [15]. In 1929 E. Hubble [16], using the 100- 

inch Mount Wilson Telescope, discovered that the redshift of lines (translated by him into speed) in spectra of weak 

nebulae (which he had found to be galaxies) increases with the distance to them. He interpreted this as recession. This was 

considered as a proof of a non-stationarity of the universe. However, the values of the parameters relevant to the universe 

remained uncertain and had to be determined by observations. 

Observers turned to clarification of the cardinal question of whether the universe is closed or open, that is, what 

is larger: the actual mass density of matter in space, 𝜌, or the critical density, 𝜌c, delimiting closed and open models. At 

that time it was believed that the universe consists of primarily observable objects that radiate or absorb light, such as 
planets, stars, galaxies, gas, and dust that form the baryonic component of the universe. Later, the dark matter was added 
to the baryonic component, the amount of which is determined indirectly. This dark matter is manifested through the 
attractive force of gravity: its existence explains the flat rotation curves of spiral galaxies, the compactness of rich galaxy 
clusters, to which the virial theorem is applicable, and gravitational lensing effect. The nature of this matter has not been 
established, but its existence explains the observations. 

Many observational works have been devoted to answering the cardinal question. These works use cosmological 

tests that determine the ratio Ω0 = 𝜌/𝜌c (or deceleration parameter 𝑞 = Ω0/2 ). The review by [17] describes four 

different tests that allow one to reconcile theory and observation by comparing the theoretical dependence of some quantity 

on cosmological redshift 𝑧 with its observable behavior for different values of Ω0. One of the tests suggests observations 
at different distances of a “standard candle,” that is, an object (for example, a galaxy) of known intrinsic luminosity. For 
a long time, no such object was available, since there is a variety of galaxy and quasar luminosities and the evolution of 
luminosities is not fully understood. 

The value of the Hubble constant 𝐻0 is very significant, since it is used to determine the critical density. The 

initial estimate of this constant by Hubble himself, 𝐻0 = 558 km/s/Mpc, was overestimated by almost ten times, because 

he mistook bright objects, identified later by radio astronomy methods as HII regions, for stars, whereas the former are 

much brighter than the latter. As a result, luminosities were overestimated, distances derived from them were 

underestimated, hence the value of 𝐻0 was overestimated, as established by A. Sandage in 1958 [18]. As time went on, 

the Hubble constant was refined. This was the focus of a series of papers by [19]. The distance scale was based on the 

brightest blue and red giants in galaxies, with reference to Cepheid variables. The results were summarized in a review 

[20], although it was noted that different methods give values of 𝐻0 that differ by several times due to systematic errors 

of the methods. A detailed history of construction of cosmological models and creation of the observational basis of 

cosmology is available in the book [21]. 

The cosmological term was sometimes taken into account without clarifying its meaning; more often it was 

ignored (see the review by [22]). The physical meaning to the cosmological term was given by E.B. Gliner [23]. 

Considering various forms of non-traditional energy-momentum tensors, he also interpreted the cosmological term as such 

a tensor corresponding to some substance, characterizing the substance as vacuum-like. Currently this substance is called 

“dark energy.” Its repulsive effect leads to models of exponential time-dependent expansion of the universe. In the 1980s, 
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these solutions were used in the theory of cosmological inflation, which describes the earliest stages of the evolution of 

the universe [24 and 25]. 

Substantial progress in determining cosmological parameters was achieved by technological advances in the end 

of 20th century, which provided improved instruments for ground-based telescopes, increased the sensitivity of receivers 

in different regions of the electromagnetic spectrum, and made possible launches of measuring devices operating in space. 

As a result, observational astrophysics, including cosmology, has become a multi-wavelength science. The decisive step 

towards the most adequate model of the real universe was made by two groups that used as a standard candle supernovae 

(SN) of type Ia, since the light curves of such SNs reliably determine their luminosity. Group one [26] using 10 SNs and 

group two ([27]) using 42 SNs have found that the main contribution to the critical density corresponds to the cosmological 

constant 𝚲. Both papers mentioned above describe the history of employing SN of this type as a standard candle. For 

example, this was done by [19], who used 16 SNs from the Coma Berenices and Virgo clusters to construct a Hubble 

diagram, with the calibration based on two close supernovae, 1937c in the galaxy IC4182 and 1954a in NGC4214. 

However, this was insufficient to make accurate conclusions. 

Subsequently, the observations were extended to the highest redshifts, up to z= 1 and soon to z= 1.8 [28], which 

confirmed the conclusion of [26 and 27], and rejected other interpretations (see [22]). Confirmations were obtained by 

other types of observations as well. Therefore, the conclusion by [26 and 27] that 𝚲 plays a significant role in the cosmos 

became a fundamental aspect of the Standard model that best describes the universe. Although refinement of the 

parameters of the model continues, results of the Wilkinson Microwave Anisotropy Probe (WMAP) [29] and Plank [30 

and 31] missions have allowed us to specify the value of 𝐻0 with an accuracy of 10% or even 7%. 

 

BASIC EQUATIONS OF HOMOGENEOUS COSMOLOGICAL MODELS 
In order to show the peculiarities of the Standard model we begin with a brief presentation of the general theory 

of homogeneous cosmological models. 

 

SPACE-TIME METRIC 
Any construction of a space-time model begins with the establishment of its metric. For cosmological models 

the metric in conventional notation has the common form: d𝑠2 = 𝑐2d𝑡2 − d𝑙2. It is convenient to determine the following 
alternative functions, related by the equation cs2 𝜒 + 𝑘sn2 𝜒 = 1: 

𝑘 𝑘 
 

 

 

sn𝑘 

sin 𝜒 for 𝑘 = 1, 

𝜒 = {
𝜒 for 𝑘 = 0, 
sh 𝜒 for 𝑘 = −1, 

cos 𝜒 for 𝑘 = 1, 
1 for 𝑘 = 0, 

cs 𝜒 = { 
ch 𝜒 for 𝑘 = −1. 

 
(1) 

 

Then the cosmological principle, according to which everything in the universe on large scale at each moment is 

distributed uniformly and isotropically, is accepted, so that all points of space are equal. Everything that occurs in each of 

them and with respect to them is completely the same. This leads to the metric of space: 

d𝑙2 = 𝑅2(𝜂)[d𝜒2 + sn2 𝜒 d𝜔2], d𝜔2 = d𝜃2 + sin2𝜃d𝜑2, (2) 

where 𝜂 and 𝜒 are dimensionless (conformal) time and spatial coordinates, with 𝑘=1, 0,−1 corresponding to closed, 

flat, and open space, respectively, 𝑅(𝜂) is the radius of curvature, and d𝜔2 is the metric on a sphere of unit radius, with 

angular coordinates 𝜃 and 𝜑. The curvature, 𝑘/𝑅2, is constant at every moment over entire space. The only point of 

space that needs to be specified is the location of the observer (humanity), and the reference time, which is the current 

epoch. 

Let us fix a moment 𝑡 and the corresponding conformal time 𝜂 and draw a ray with the beginning at the position 

of the observer O, with direction determined by spherical angles 𝜃 = 𝜃0, 𝜑 = 𝜑0. There is a point on the sphere with a 

radius of unity which corresponds to this ray such that the distance d𝜔 = 0. Let us choose a point 𝑃 on the ray at distance 

𝑙 from point O and with a spatial coordinate 𝜒, and draw a sphere, all points of which are at a distance 𝑙 from point O, 

so that it passes through the selected point 𝑃. Note that in the general case (if 𝑘 ≠ 0) the point O is not the center of the 

sphere (let us call it a quasi-center), the radius of the sphere, 𝑟, is not equal to 𝑙, and the ray is not a straight line. (In 

analogy, the radius of a parallel on the Earth’s surface is not equal to the distance between the parallel and pole; the latter 

is not the center of the parallel, and a ray goes along the meridian, which is not a straight line.) The connection of 𝑙 and 

𝑟 with a radius of curvature is expressed by the following equations: 

𝑙 = 𝑅(𝜂)𝜒,  𝑟 = 𝑅(𝜂)snk 𝜒, (3) 

wherein 𝑙 > 𝑟 at 𝑘 = 1, 𝑙 < 𝑟 at 𝑘 = −1, and 𝑙 = 𝑟 at 𝑘 = 0. 

The adoption of a space metric defines all geometric properties of space. For example, the volume of space in a 
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sphere whose points lay on the distance 𝑙 = 𝑅(𝜂)𝜒 from O (𝜒 = 0). A radius of the sphere is 𝑅(𝜂)s𝑛𝑘(𝜒0) for 𝑘 ≠ 0 is 
equal to 

 
𝑉(𝜂, 𝜒) = 𝑅3(𝜂)4𝜋 ∫

𝔃0 sn2 𝜒d𝜒 = 𝑅3(𝜂)2𝜋 |𝜒 −  sn (2𝜒 )|. (4) 
0 𝑘 0 2 𝑘 0 

For 𝑘 = 1 the total volume of the space, 2𝜋2𝑅3(𝜂), is finite, since 𝜒 ≤ 𝜋. For 𝑘 = 0, it is formally necessary to replace 

sn𝑘(2𝜒0) by its Taylor series representation up to the 𝜒3 term. 
The conformal time 𝜂 is connected with the usual time, which is fixed by the value of the density, by the equality 

𝑐d𝑡 = 𝑅(𝜂)d𝜂. In these variables, the metric takes the form of the Friedmann-Robertson-Walker metric: 

d𝑠2 = 𝑅2(𝜂)[d𝜂2 − d𝜒2 − sn2 𝜒 d𝜔2]. (5) 

 

 

THE FRIEDMANN EQUATIONS 
From the equations of the Einstein theory of gravitation (GR) with the metric (3), two equations for the radius of 

curvature can be derived, known as the Friedmann equations: 

𝑅  = − 
4𝜋𝐺 𝑃 𝚲𝑐2 

3  
(𝜌 + 3 

𝑐2) 𝑅 + 𝑅, (6) 
3 

𝑅 2 = 
8𝜋𝐺 

𝜌𝑅2 + 
𝚲𝑐2 

𝑅2 − 𝑘𝑐2. (7) 
3 3 

Here 𝜌 is the total mass density of matter and radiation, 𝑃 is their total pressure, and 𝚲 is the cosmological constant. 

The terms with the cosmological constant in Eqs. (6)–(7) can be appended to the first term in each expression, 

which allows us to determine the total mass density and pressure, as well as the gravitational mass density: 

 

𝜌t = 𝜌 + 𝜌𝚲,  𝑃t = 𝑃 + 𝑃𝚲,  𝜌g = 𝜌t + 3 
𝑐2. (8) 

To satisfy these relations, it is necessary to determine the density and pressure corresponding to the cosmological term as 

follows: 

𝜌  = 
𝚲𝑐2 

,  𝑃 = − 
𝚲𝑐4 

. (9) 
𝚲 

 

It is negative pressure that produces repulsion. 

8𝜋𝐺 𝚲 
 

8𝜋𝐺 

Then the equations can be written in shorter form: 

𝑅  = − 
4𝜋𝐺 

𝜌 𝑅, (10) 
 

3 g 

𝑅 2 = 
8𝜋𝐺 

𝜌 𝑅2 − 𝑘𝑐2, (11) 
3 t 

or, for a scale factor 𝑎 = 
𝑅 

= 
1 

, 
𝑅0 1+𝑧 

 
2 

𝑎  = − 
4𝜋𝐺 

𝜌 𝑎, 𝑎 2 = 
8𝜋𝐺 

𝜌 𝑎2 − 
𝑘𝑐 

. (12) 
3 g 3 t 

 

𝑅2 

The past corresponds to the values 𝑎 < 1; at the current epoch 𝑡 = 𝑡0, 𝑅 = 𝑅0, 𝑎 = 1, and redshift 𝑧 = 0; and for the 

future 𝑎 > 1, −1 < 𝑧 < 0. According to its definition, the scale factor is tied to the current epoch. 

For compatibility of the equations, an additional condition is required: 
 

𝜌 t = −3 (𝜌t 
+ 

𝑃t) 𝐻, (13) 
𝑐2 

 

where the new variable, 𝐻 = 
𝑅 
, like the radius of curvature, depends only on time. We call it the “Hubble parameter.” Its 
𝑅 

current value, 𝐻0, is the Hubble constant. The relation (13) can be interpreted as the condition of adiabatic expansion of 

space along with its contents, since it implies that the differential of the total energy in volume 𝑉 satisfies 

 

d(𝑐2𝜌t𝑉) = −𝑃td𝑉. (14) 



Journal of Advance Research in Applied Science (ISSN 2208-2352) 

Volume-11 | Issue-01 | Apr, 2025 23 

 

 

0  Ω  Ω  Ω  3𝐻 

 Ω 

 

Equation (10) also yields an equation that the Hubble parameter obeys: 

𝐻  = −𝐻2 − 
4𝜋𝐺 

𝜌 . (15) 
 

3 g 

 

NON-INTERACTING COMPONENTS 
After the annihilation of electron-positron pairs, the composition of the universe became simpler, and since then 

its components have been the non-relativistic matter (including baryons and dark matter), radiation, neutrinos, and so- 

called dark energy (formerly called the vacuum), whose density and pressure are given by formulas (9). Of course, at high 

temperatures the matter was relativistic, but then its abundance was small. Similarly, due to the finiteness of the mass, at 

low temperatures neutrinos transformed from ultrarelativistic to relativistic (moderately or weakly) or even non- 

relativistic, but by then their mass fraction was small and difference of their masses from zero do not affect evolution of 

the universe [32]. Therefore, we assume that during the entire evolution of the universe over the period under 

consideration, the matter has not exerted pressure. This means that the matter has been non-relativistic (dust-like), while 

all kinds of neutrinos can be treated as ultra-relativistic. 

We can assume that during this period the four components did not interact with each other. Mark energy in 

general does not interact with anything, while the interaction of cosmological neutrinos with matter essentially ceased 

before the annihilation epoch. Radiation interacted with matter, namely, free electrons and photons interacted until the end 

of the recombination epoch. However, after annihilation and establishment of equilibrium distributions, Compton 

(Thompson) scattering changes significantly neither the number of photons and electrons nor their energies. Therefore, 

the evolution of the components took place independently thereafter. 

In view of the foregoing, the equations of state of the four indicated components: the dust matter (d), the radiation 

(r), neutrinos (𝜈), and dark energy (𝚲) are written in the form 
𝑃 = 0,  𝑃 = 

𝑐2 

𝜌 ,  𝑃 = 
𝑐2 

𝜌 ,  𝑃 = −𝑐2𝜌 . (16) 
d r 3  r 𝑣 3  𝑣 𝚲 𝚲 

The condition (13) is fulfilled for each non-interacting component separately: 

 

𝜌 d = −3𝜌d𝐻, 𝜌 r = −4𝜌r𝐻, 𝜌 𝑣 = −4𝜌𝑣𝐻, 𝜌 𝚲 = 0. (17) 

The equations are easily integrated, which provides the evolution of the densities of the components: 

𝜌0𝑅3 
𝜌0 𝜌0𝑅4 

𝜌0 𝜌0𝑅4 
𝜌0 

𝜌d =  d 0 =  d , 𝜌r =  r 0 =  r , 𝜌𝑣 =  𝝂 0 =  𝝂 , 𝜌𝚲 = 𝜌0. (18) 
𝑅3 𝑎3 𝑅4 𝑎4 𝑅4 𝑎4 𝚲 

Here, as above, the index 0 means belonging to the current epoch. 

 

CRITICAL PARAMETERS 

 

In theory, the critical density, which plays an important role, and the fraction of all components in it are defined 

as: 

𝜌 = 
3𝐻2 

,  𝜌 − 𝜌 = 𝑘  
3𝑐2  

,  Ω = 
𝜌t ,  Ω − 1 = 𝑘 

𝑐2 

. (19) 
    

c 8𝜋𝐺 t c 8𝜋𝐺𝑅2 t 𝜌𝔀 
t 𝑅 2 

The sign of differences 𝜌t − 𝜌c and Ωt − 1 coincides with the sign of 𝑘. If 𝜌t − 𝜌c = 0 then Ωt − 1 = 0 and 𝑘 = 0. 
The shares of individual components are also determined: 

Ω  = 
𝜌d , Ω = 

𝜌r , Ω  = 
𝜌𝝂 , Ω  = 

𝜌𝚲 , Ω = Ω + Ω + Ω . (20) 
d 𝜌𝔀 

r 𝜌𝔀 
𝑣 𝜌𝔀 

𝚲 𝜌𝔀 
t d r 𝚲 

The densities of the components are expressed in terms of the current critical density and their current shares in it: 
 

0 
𝜌d = 𝜌 d , 𝜌 

0 
= 𝜌0 r , 𝜌 

0 
= 𝜌0  𝝂 , 𝜌 

2 
= 𝜌0Ω0 , 𝜌0 = 0 . (21) 

c 𝑎3 r c 𝑎4 𝑣 c 𝑎4 𝚲 c  𝚲 c 8𝜋𝐺 

Since radiation and neutrinos evolve in the same way, one can introduce their common density and pressure: 
 

0 
𝜌r𝑣 = 𝜌r + 𝜌𝑣 = 𝜌0 r𝝂 , 𝑃r𝑣 = 𝑃r + 𝑃𝑣 = 𝑐2 

 
 

 
𝜌r𝑣, Ωr𝑣 = 𝜌r𝝂 

 

. (22) 
c 𝑎4 3 𝜌𝔀 
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ssing introduced quantities, the second equation for the scale factor (12) is rewritten in the form: 

 

𝐻 = 
𝑎  

= 
𝐻0 
√Ω0 + Ω0𝑎 + Ω0 𝑎4 − 

𝑘𝑐2 

𝑎2. (23) 
  

𝑎 𝑎2 r𝑣 d 𝚲 𝑅2𝐻2 
0 0 

The first equation has already been taken into account in formulas (21). A solution of equation (23) represents an implicit 

dependency of the scaling factor on time. At the right hand of (23) under the square-root there is a fourth-order polynomial 

with respect to 𝑎. This form of the solution was obtained by Lemaître [12]. Friedmann’s solutions [10 and 11] did not 

take into account the radiation, so that the polynomial under the root was of the third order. 

RADIATION, HORIZON, AND DISTANCES 
The equation of motion of a photon along the ray 𝜃 = 𝜃0, 𝜑 = 𝜑0 toward us follows from the equality d𝑠 = 0, 

and connects its spatial and temporal coordinates: 𝜒 = 𝜂0 − 𝜂. At the instant of emission 𝜒e = 𝜂0 − 𝜂𝑒 . Since 𝜂e ≥ 0, 

it follows that 𝜒e ≤ 𝜂0. The equality 𝜒e = 𝜂0 defines a spherical horizon; photons left this horizon at the initial moment. 

For 𝜒e > 𝜂0 a photon, even released in our direction, still has not managed to reach us. This is a geometric horizon. There 

is also a physical horizon, which is the sphere of the last scattering during cosmological recombination. One can look 
beyond it: the theory of nucleosynthesis and the interpretation of distortions of the cosmic microwave background or relic 
radiation allow us to do so. However, it is impossible in principle to look behind the geometric horizon. 

In cosmology, several concepts of distances can be introduced. McCrea [33] was the first to pay attention to this, 

and gave definitions of the distances. 

1. A metric distance 𝑙, which is the distance along the line of sight drawn from the 

observer with fixed angles (see formula (3)). 

Other distances are determined by a common principle: the expression for any 

value in an expanding and, generally speaking, non-planar space, is written down, and then 

this expression is equated to the expression that would be true for the usual Euclidean space 

at a given distance. The distance is named according to the quantity for which formulas are 

written. ssually, the following distances from the observer are used (we define these at an 

arbitrary epoch, 𝑡 = 𝑡(𝜂), but for the selected point where we, humanity, are located). 

2. For the angular size. For the angular size. Let two signals issue at moment 

𝑡source = 𝑡(𝜂 − 𝜒) from two points located from the observer at equal distance 

corresponding to the spatial coordinate 𝜒, and separated by an infinitesimally small angular 
distance, d𝜔. Let these signals arrive at the observer at moment 𝑡 = 𝑡(𝜂). Then the linear 

distance between the points is d𝐷ad = 𝑅(𝜂 − 𝜒)sn𝑘 (𝜒)d𝜔 = 𝑙a𝑑d𝜔. This implies that the 

distance 𝑙ad = 𝑅(𝜂 − 𝜒)sn𝑘 𝜒 is the radius of the sphere with quasi-center coinciding with 

the observer. The moment 𝜂 − 𝜒 corresponds to points for which this distance is determined. 
The distance becomes zero for 𝜒 = 0 (at the point of the observer, as one might expect) and 
when 𝜒 = 𝜂 (on the horizon). At some point the angular size has a minimum value. This 
means that the angular size of objects with the same linear size decreases in the beginning as 

the object recedes from the observer, and after passing the distance at which the angular size 

reaches its minimum value, it increases. This is due to the fact that in remote areas that 

correspond to earlier stages of expansion, the universe had a smaller scale, so that the lines of 

sight were closer to each other. Similarly, when a rail of a certain size is crossing from one 

pole of the Earth to another, first its angular size decreases, and then increases, since the 

meridians converge approaching the poles. 

3. For the parallax 𝑙pl = 𝑅(𝜂)sn𝑘 𝜒, which is the radius of the sphere, but 

rather with a quasicenter at the point to which the distance is measured, and at the time of the 

measurement. 

 

4. For the number of photons received by the observer from the source, taking 

into account the difference in passage of time at the source and the observer, 

𝑙nb = 𝑙pl√𝑅(𝜂)/𝑅(𝜂 − 𝜒). 

5. For the apparent bolometric luminosity (called also photometric distance) 

𝑙bb = 𝑙pl𝑅(𝜂)/𝑅(𝜂 − 𝜒), where in addition to the difference in the passage of time, the loss 
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of radiative energy due to redshift is taken into account. If the luminosity of an object located 
at the position corresponding to the radius of curvature 𝑅(𝜂) is equal to 𝐿O , then the 

observed luminosity according to the definition of distance derived from the bolometric 
brightness is equal to: 

 

𝐿bb = 
 𝐿O  . (24) 

bb 

To obtain the current values of these distances, it is necessary to substitute 𝜂 = 𝜂0, and 𝑅(𝜂0) = 𝑅0. Modern 

distances are related as follows: 

 
𝑙0  = 𝑙0 √1 + 𝑧 = 𝑙0 (1 + 𝑧) = 𝑙0 (1 + 𝑧)2 = 𝑅0sn𝑘(𝜒)(1 + 𝑧). (25) 
bb nb pl ad 

Since 𝑧 ≥ 0, in this chain of equalities the magnitude of the distances decreases from left to right. 

The velocity of change of metric distance, which is the expansion rate at an arbitrary epoch, 𝜂, complies with the 

Hubble–Lemaître law: 
 

𝑙 = 𝑅(𝜂)𝜒,  𝑣 = 𝑙  = 𝑅 𝜒 = 𝑅  𝑙 = 𝐻𝑙. (26) 
𝑅 

The Hubble distance, at which the expansion velocity is equal to the speed of light, is 𝑙H = 𝑐/𝐻; the current Hubble 

distance is 𝑙0 = 𝑐/𝐻0. 

The relationship between speed and redshift is more complex than that between speed and distance [34]. At the 

current epoch the relation is: 

𝑣 = 𝐻 ∫
𝑧 d𝑧 

. (27) 
𝑐 0 0  𝐻 

This connection is model dependent and admits velocities greater than the speed of light, so that the cosmological redshift 

is not identical to the classical Moppler effect. The reason is that a photon changes its frequency not only at the instant of 

emission from a moving source, which is taken into account by the Moppler effect, but experiences a decrease in energy 

at each point of its flight to the observer due to the expansion of space, which occurs according to the appropriate model. 

The expansion occurs identically with respect to any point considered as a center. The existence of cosmological velocities 

higher than the speed of light does not contradict the theory of relativity, since the mutual receding of points occurs not 

because of their movement, but because of the expansion of space, across the complete span of which no signals are 

transmitted. 

 

THE STANDARD MODEL (𝚲CDM) 

MODEL PARAMETERS 
Modern cosmology has become a science based on observational data, which now have sufficient accuracy to 

construct a model that adequately describes the real universe. The most important aspect is the inference that space is very 

close to flat, which leads one to assume that 𝑘 = 0. In this case the radius of curvature is infinitely large and should not 

appear in expressions for quantities that have physical meaning. Therefore, as is often done, we adopt for its contemporary 

value the Hubble distance: 𝑅0 = 𝑙0 = 𝑐/𝐻0. Then the metric (5) can be rewritten as: 

d𝑠2 = (𝑙0 )2𝑎2(𝜂)[d𝜂2 − d𝜒2 − 𝜒2d𝜔2]. (28) 

 

Of all the cosmological parameters, the current temperature of the radiation, which is very close to thermal (deviations 

from a blackbody spectrum are of order 10−5 ÷ 10−4) and called the cosmic microwave or relict background, has been 

determined with the greatest in cosmology accuracy: its value is 𝑇0 = 2.7277 K. At an arbitrary epoch corresponding to 

redshift 𝑧 , 𝑇 = 𝑇0/𝑎 = 𝑇0(1 + 𝑧) . The temperature of the neutrinos is connected to that of the radiation as 𝑇𝑣 = 
3√4/11 𝑇 = 0.71377 𝑇, 𝑇0 = 1.9469 K. The coefficient is obtained from the consideration that, due to the adiabatic 

expansion, the entropy of the total mixture of matter and radiation does not change, while during the annihilation of 

electron-positron pairs their entropy passes to the radiation [35]. The entropy of the neutrino gas depends only on its 

temperature, and does not change. 
Since radiation and neutrinos are ultrarelativistic, their mass densities are proportional to the fourth power of their 

temperature. For radiation according to the Stefan-Boltzmann formula, 
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𝜌0 = 
𝑎SB 𝑇4 = 4.66 ⋅ 10−34 g/cm3, (29) 

r 𝑐2  0 

where 𝑎SB = (8𝜋5ℎ/15𝑐3)(𝑘B/ℎ)4 is called the Stefan constant. For six types of neutrinos, which are fermions rather 
than bosons, 

 

0 7  𝑎SB 0 4 −34 3 

𝜌𝑣 = 6 ⋅ 
8 
⋅ 
𝑐2 (𝑇𝑣 ) = 6.35 ⋅ 10 g/cm . (30) 

Together, radiation and neutrinos have a density 

𝜌0 = 1.10 ⋅ 10−33 g/cm3. (31) 

The Hubble constant, according to the latest definitions, is known to within several percent: 𝐻 = 70 ± 3 km/s/Mpc [29 

and 31]. Here we adopt 𝐻0 = 70 km/s/Mpc = 2.27 ⋅ 10−18 1/s , so that the current critical density and the Hubble 

distance are equal to: 

 
2 

𝜌0 = 0 = 9.207 ⋅ 10−30 g/cm3, 
c 8𝜋𝐺 
𝑙0 = 

𝑐 
= 1.3215 ⋅ 1028 cm = 14.2 G light yrs = 4.2828 Gpc. (32) 

H 𝐻0 

Current relative fractions of radiation, neutrinos, and their sum are obtained as follows: 

 
Ω0 = 5.06 ⋅ 10−5,  Ω0 = 6.90 ⋅ 10−5,  Ω0 = 1.196 ⋅ 10−4. (33) 

r 𝑣 r𝑣 

The main gravitational component of the mass of the universe, according to modern concepts, is dark energy; its share is 

estimated as 0.721 ± 0.035 [29]. Let’s take the value Ω0 = 0.72, so that 𝜌0 = 6.63 ⋅ 10−30 g/cm3. Since space is flat, 
𝚲 𝚲 

𝜌t = 𝜌c and Ωt = Ω0 = 1. The rest is a fraction of the dust, Ω0 = 1 − Ω0 − Ω0 = 0.27988 ≈ 0.28 and 𝜌0 = 2.577 ⋅ 
t 

10−30g/cm3. 
d r𝑣 𝚲 d 

Cosmological densities are very low, much lower than current densities in astronomical objects. Even in 

interstellar space, in each cubic centimeter there is an average of ∼ 1 hydrogen atom. The densities of the cosmological 

components correspond to the following numbers of hydrogen atoms in a cubic meter (not cm): 
 

𝜌0 𝜌0 𝜌0 𝜌0 

106  𝔀 = 5.5, 106  𝚲  = 4.0, 106  d  = 1.5, 106  r  = 2.8 ⋅ 10−4, 
𝑚H 𝑚H 𝑚H 𝑚H 

 
𝜌0 𝜌0 

106  𝝂 = 3.8 ⋅ 10−4, 106  r𝝂 = 6.6 ⋅ 10−4, (34) 
𝑚H 𝑚H 

 where 𝑚  = 1.67 ⋅ 10−24 g. At the same time 1 g/cm3 contains 𝑛0  = 20.286 𝑇3 = 412 relict photons and 3 
H ph 0 

6 ⋅  ⋅ 
4 

4 𝑛0  = 674 relict neutrinos. ssing the density of dark energy, the current value of the cosmological constant is 
11 

0 

determined as 𝚲 = 3 𝚲  = 1.24 ⋅ 10−56 cm−2. Note that during inflation this density was equal to the Planck density: 
H 

𝜌  = 
𝚲𝑐2 

= 𝜌  = 
𝑐5 

= 5.1593 ⋅ 1092 g/cm3, so then it was 𝚲 = 9.6 ⋅ 1066cm−2. 
𝚲 8𝜋𝐺 Pl 𝐺2ℏ Pl 

Basic dependencies 

Substituting into equation (23) 𝑘 = 0 and dividing the variables, we obtain the relationship between the time 

and scale factors. ssing the relationship 𝑐d𝑡 = 𝑙0 𝑎(𝜂)d𝜂, and the relationship between the time coordinate and 𝑎, we 

derive:  

 
𝑎 𝑎d𝑎 ∫ 

 

 
𝑎 = 𝐻 𝑡, ∫ 

 

 
d𝑎 

 

 
= 𝜂. (35) 

0 
√Ω0 +Ω0 𝑎+Ω0 𝑎4 

0 0 
√Ω0 +Ω0 𝑎+Ω0 𝑎4 

r𝝂 d 𝚲 r𝝂 d 𝚲 

 
If we introduce the notation (Ω0 + Ω0 + Ω0 = Ω = 1), 

r𝑣 d 𝚲 t 

 0 
 

 

 

Ω0  1/4 

𝐻𝚲 = 𝐻0√Ω𝚲 ,  𝑥0 = ( 𝚲 ) , 
r𝝂 
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d  d 

Ω 
( 0 

 0 )−1/4 (36) d 𝛽 = 0 0 𝜂∗ = Ωr𝑣Ω𝚲 , 
(Ωr𝝂)3/4(Ω𝚲)1/4 

 

and make the change of variable 𝑎 = 𝑥/𝑥0, then the equation ((23)) will be transformed into 

 
 

𝑥  

𝐻 = 
𝑥 

= 𝐻𝚲 

and the relations between the variables take the form 

√1+𝛽𝑥+𝑥4

, (37) 
𝑥2 

 

𝑥 𝐻 𝑡 = 𝐼 (𝑥, 𝛽),  𝜂 = 𝜂 𝐼 (𝑥, 𝛽),  𝐼 (𝑥, 𝛽) = ∫ 𝑥𝑗d𝑥 . (38) 
𝚲 1 ∗ 0 𝑗 

 

0 √1+𝛽𝑥+𝑥4 

The parameter of the integrals with variable upper limit is 𝛽 = 265.69 . The values of the constants 𝐻𝚲 = 
59.397 km/s/Mpc = 1.9249 ⋅ 10−18 s−1 , 𝑥0 = 8.8088 , 𝜂∗ = 10.381 . The age of the universe according to the 
Standard model with the adopted values of the parameters is 𝑡0 = 𝐼1(𝑥0, 𝛽)/𝐻𝚲 = 4.33 ⋅ 1017s= 13.722 Gyr. 

The two integrals are computed numerically, although approximate representations of the integrals are possible 
as well. For small 𝑥, relatively simple formulas can be obtained: 

𝐼 (𝑥, 𝛽) ∼ 2 
𝑥 
− 

1 𝑥5 1 
(5 + 

10 
+ 

12 
+ 

8 
) + 

0 𝑞 
 

35 𝑟 𝑞2 
  

𝑞 𝑞2 
 

𝑞3 

+ 
𝑥9 

(99 + 
198 

+ 
252 

+ 
216 

+ 
80 
− 

96 
− 

192 
− 

128 (39) 
 

 

1716𝑟3𝑞2 

 
 

𝑞 𝑞2 
 

  

𝑞 𝑞4 
 

 

𝑞5 𝑞6 𝑞7 ), 

𝐼 (𝑥, 𝛽) ∼ 
2 𝑞+1 

𝑥2 −  
𝑥6  

(7 + 
14 

+ 
18 

+ 
16 

+ 
8 

) + 
1 3 𝑞2 

 

63𝑟𝑞2 
  

𝑞 𝑞2 
 

𝑞3 
 

𝑞4 

+ 
𝑥10 

(143 + 
286 

+ 
374 

+ 
352 

+ 
200 

− 
32 
− 

224 
− 

256 
− 

128 (40) 
 

 

2860𝑟3𝑞2 

 
 

𝑞 𝑞2 𝑞3 𝑞4 
 

 

𝑞5 𝑞6 𝑞7 𝑞8 ). 

 
 

Here 𝑟 = √1 + 𝛽𝑥, 𝑞 = 1 + 𝑟. These formulas represent the integral 𝐼1 with a relative discrepancy of 10−6 for 𝑥 ≤ 
1.9, 10−5 for 𝑥 ≤ 2.5, and 10−4 for 𝑥 ≤ 3.2. The accuracy of the formula for 𝐼0 is somewhat higher: the value of 10−6 
is already achieved for 𝑥 ≤ 2.1, 10−5 for 𝑥 ≤ 2.9, and 10−4 for 𝑥 ≤ 3.6. 

For large values of the argument, the behavior of the integrals is substantially different. The integral 𝐼0 from 

𝑥 → ∞ has a finite limit, while 𝐼1 tends to infinity. Approximately, they can be represented as follows: 
 

1 𝛽 1/2 5 4 𝛽 

𝐼0(𝑥, 𝛽) ∼ 𝐼0(∞, 𝛽) − 
𝑥 

(1 + 
𝑥3) 𝐹 (1, 

6 
, 

3 
, − 

𝑥3), 

𝐼1(𝑥, 𝛽) ∼ ln 𝑥 + 𝑆0(𝛽/𝑥3) + 𝑃(𝑥∗, 𝛽), (41) 
𝑃(𝑥 , 𝛽) = 𝐼 (𝑥 , 𝛽) − ln 𝑥 − 𝑆 (𝛽/𝑥3), 𝑆 (𝑢) = 

1 
∑∞ 

(2𝑛−1)!! 
(−𝑢)𝑛. (42) 

∗ 1  ∗ ∗ 0 ∗ 0 3  𝑛=1 
 

𝑛(2𝑛)!! 

Here 𝐹(𝑎, 𝑏, 𝑐, 𝑥) is the hypergeometric function. For 𝑥∗, we can take the value of 10. For 𝛽 = 265.69, the values of 

the integrals in the last formulas are: 𝐼0(∞, 𝛽) = 0.42880, 𝐼1(10, 𝛽) = 0.94380, and 𝑃(10, 𝛽) = −1.3992. Calculations 
using formula (41) give the value of 𝐼0(𝑥, 𝛽) with five significant digits when 𝑥 ≥ 7.3, and with (42) five significant 
digits of 𝐼1(𝑥, 𝛽) are obtained when 𝑥 ≥ 8.5. 

It should be emphasized that the scale factor 𝑎 and the redshift 𝑧 are tied to the current epoch, and that they 

change with increasing age of the universe. At the same time, the variable 𝑥 is associated only with time 𝑡 (through the 

radius of the curvature 𝑅), while the parameters 𝛽, 𝐻𝚲, and 𝜂∗ 
are strictly constant. Indeed, products 𝑀 = 

4𝜋 
𝜌 𝑅3 = 

3 

2.49 ⋅ 1055 g (the mass of dust matter in a sphere of radius 𝑅) and 𝑊 = 4𝜋𝜌r𝑣𝑅4 = 4.22 ⋅ 1080 g ⋅ cm do not depend 

on time, as is also the case for the density 𝜌𝚲 = 𝜌0, which is proportional to the cosmological constant 𝚲. These values 

can be used to express the variable 𝑥 and other parameters: 

 
 

𝑥 = ( 
4𝜋𝜌𝚲 1/4 

√
𝚲 3𝑀d 

𝑊  
) 𝑅, 𝐻𝚲 = 

3 
𝑐, 𝛽 = 

𝑊3/4(4𝜋𝜌 )1/4, 
 

9 𝑐4 1/4 9 𝑐2 1/4 

𝜂∗ = ( 
16𝜋 𝐺2𝑊𝜌  

) = (  ) 
2 𝐺𝑊𝚲 

. (43) 

The variable 𝜂 is directly connected with time and expressed through 𝜂∗ and 𝑥. 
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ROLES OF COMPONENTS AT DIFFERENT EPOCHS 
In the expressions for total mass density 

 

𝜌 = 𝜌 = 𝜌 + 𝜌  + 𝜌 = 𝜌0Ω0 1+𝛽𝑥+𝑥4 
 

(44) 

 

and gravitational mass density 

t c d r𝑣 𝚲 c  𝚲 𝑥4 

 

𝜌 = 𝜌 + 2𝜌 − 2𝜌 = 𝜌0 Ω0 2+𝛽𝑥−2𝑥4 
 

(45) 
g d r𝑣 𝚲 c 𝚲 𝑥4 

the mass density of dark energy is constant, while others decrease with time. Therefore, at different epochs the components 

have played different roles. 

At certain points in time, the densities become equal. Since the components give different contributions to the 
gravitational mass density — the radiation gives a double positive contribution, and the vacuum gives a double negative 
one — their effect on the gravitation is different at different times. All of these moments are given in Table I, which lists 

the values of the parameter 𝑥, the redshift 𝑧, and the coordinate 𝜂, the fraction of the full age and the age of the universe 
itself at the corresponding moments, as well as the time elapsed from these moments to the present epoch. The gravitational 

mass density becomes zero at a value of 𝑥 determined by the equation 𝑥4 − (𝛽/2)𝑥 − 1 = 0. Moments when 𝜌d = 𝜌𝚲 

and when 𝜌g = 0 almost coincide, because the radiation and neutrino densities are small at these moments. The moment 

when 𝜌r𝑣 = 𝜌𝚲 corresponds to the time when 𝑥 is very close to 1. 

TABLE I. Epochs of equality of densities and forces. 

 
Epoch 𝑥 𝑧 𝜂 𝑡/𝑡0 𝑡 Gyrs 𝑡0 − 𝑡 

𝜌d = 𝜌r 0.00159 5529 0.0151 1.34 ⋅ 10−6 1.85 ⋅ 10−5 13,7 
𝜌d = 𝜌𝑣 0.00217 4057 0.0200 2.41 ⋅ 10−6 3.31 ⋅ 10−5 13.7 
𝜌d = 2𝜌r 0.00319 2764 0.280 4.90 ⋅ 10−6 6.72 ⋅ 10−5 13.7 
𝜌d = 𝜌r𝑣 0.00376 2339 0.0324 6.64 ⋅ 10−6 9.11 ⋅ 10−5 13.7 
𝜌d = 2𝜌𝑣 0.00434 2028 0.365 8.59 ⋅ 10−6 1.72 ⋅ 10−4 13.7 

𝜌d = 2𝜌r𝑣 0.00752 1169 0.0572 2.27 ⋅ 10−5 3.11 ⋅ 10−4 13.7 

𝜌r𝑣 = 𝜌𝚲 1.0000 7.809 1.198 0.0488 0.669 13.0 
𝜌d = 2𝜌𝚲 5.1025 0.7264 2.7138 0.5261 7.219 6.5 

𝜌g = 0 5.1050 0.7255 2.7144 0.5264 7.224 6.5 

𝜌d = 𝜌𝚲 6.4288 0.3702 2.983 0.7043 9.66 4.06 
Current 8.8088 0 3.32 1 13.7 0 

 

DISTANCES, SPEEDS, ACCELERATION: PAST, CURRENT, AND FUTURE 

In the flat model, sn0(𝜒) = 𝜒, the quasicenter and real center of spheres coincide, the parallax distance and the 

radius of a sphere are equal to the metric distance: 𝑙p𝑙 = 𝑟 = 𝑙. In the Standard model the expressions for 𝑙/𝑙0 and the 

dimensionless velocity of the expansion 𝑣/𝑐 coincide as well. Indeed, at any moment: 
 

𝑣 
= 

𝑙  

𝑐 𝑐 
= 

𝐻 

𝑐 
𝑙 = 

𝑙 
 

 

𝑙𝐻 
. (46) 

In the Standard model the metric distance from the observer in the current universe to a location with coordinate 𝜒 is 

given by the formula following from (26) and (38): 

 
𝑙0 = 𝑅(𝜂0)𝜒 = 𝑅0𝑎(𝜂0)𝜒 = 𝑙0 (𝜂0 − 𝜂) = 𝑙0 𝜂∗[𝐼0(𝑥0, 𝛽) − 𝐼0(𝑥, 𝛽)]. (47) 

H H 

 

The equalities (25) can be rewritten as 

 
𝑙0  = 𝑙0 √1 + 𝑧 = 𝑙0 (1 + 𝑧) = 𝑙0 (1 + 𝑧)2 = 𝑅0𝜒(1 + 𝑧) = 𝑙0(1 + 𝑧). (48) 
bb nb pl ad 

In what follows, we refer mainly to current values and use dimensionless distances, measuring them in terms of the Hubble 

distance according to the scheme 𝑙  = 𝑙/𝑙0 . Therefore, all distances are expressed (as 𝑣/𝑐 in (46)) via the metric distance: 
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  𝑣       
𝑙pl = 

𝑐 
= 𝑙 = 𝜂∗[𝐼0(𝑥0, 𝛽) − 𝐼0(𝑥, 𝛽)],  𝑙ad = 𝑙𝑎, 

𝑙  = 
𝑙 

 ,  𝑙  
𝑙  𝑥 

=  
1 

. (49) 
nb √𝑎 bb = 

𝑎 
,  𝑎 = 

𝑥 

 
 

1+𝑧 

Figure 1 plots dependences of distances on the variable 𝑥 ( left) and redshift 𝑧 ( right). 
 

FIG. 1. Mistances as functions of 𝑥 ( left) and 𝑧 ( right). 

 

Let us consider three additional moments in time corresponding to particular events. The first event was the 

phisical horizon (about 𝑧 = 1000), the second was when the angular size distance had its maximum value (𝑧 = 1.6302), 

and the third was when the current metric distance equaled the Hubble distance (𝑧 = 1.4233). These data, and also for 

comparison, the moments corresponding to several characteristic values of redshift, are given in Table II, serving as a 

continuation of Table I. 

 

 

TABLE II. Epochs associated with the characteristic values of redshift. 

 

𝑥 𝑧 𝜂 𝑡/𝑡0 𝑡 Gyrs 𝑡0 − 𝑡 

0.0088000 1000 0.064629 2.9659 ⋅ 10−5 4.0697 ⋅ 10−4 13.721 
0.017582 500 0.10796 9.4743 ⋅ 10−5 1.3000 ⋅ 10−3 13.720 
0.087215 100 0.30606 1.2021 ⋅ 10−3 0.016494 13.705 
0.17272 50 0.45696 3.4279 ⋅ 10−3 0.047036 13.675 
0.80080 10 1.0642 0.034925 0.47924 13.242 
0.97875 8 1.1841 0.047233 0.64811 13.074 
3.3491 1.6302 2.2320 0.29360 4.0288 9.6930 
3.6350 1.4233 2.3224 0.33008 4.5293 9.1925 
2.2022 3 1.8084 0.15891 2.1806 0.11541 

 

Table III lists the values of the distances to the points indicated in Tables I and II. The rate of change of the 

parallactic distance coincides with 𝑣/𝑐, since this distance corresponds to the metric distance. The rates of recession of 

the remaining distances are determined from their definitions by differentiation with respect to time while keeping the 

spatial coordinate 𝜒 fixed. The expressions for these velocities are given in Table IV. 

0 
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Table III. Mistances to characteristic points of the Standard Model. 

 

𝑧 𝑙  𝑙 ad 𝑙 nb 𝑙 bb 

∞ 3.322 0 ∞ ∞ 
5529 3.307 5.981 ⋅ 10−4 245.9 18288 
4057 3.302 8.138 ⋅ 10−4 210.4 13401 
2764 3.294 1.192 ⋅ 10−3 173.2 9108 
2339 3.290 1.406 ⋅ 10−3 159.2 7700 
2028 3.286 1.619 ⋅ 10−3 148.0 6667 
1169 3.265 2.790 ⋅ 10−3 111.7 3821 
1000 3.258 3.255 ⋅ 10−3 103.1 3261 
500 3.214 6.416 ⋅ 10−3 71.95 1610 
100 3.016 0.02987 30.31 304.7 
50 2.865 0.05619 20.46 146.1 
10 2.258 0.2053 7.490 24.83 
8 2.138 0.2376 6.415 19.25 

7.809 2.125 0.2412 6.306 18.72 
3 1.514 0.3785 3.028 6.056 

1.630 1.090 0.4146 1.768 2.868 
1.423 1.000 0.4126 1.557 2.423 

0.7264 0.6086 0.3525 0.7996 1.051 
0.7255 0.6100 0.3524 0.7987 1.049 
0.3702 0.3397 0.2479 0.3977 0.4655 

0 0 0 0 0 

 

 

Table IV. Current velocities of recession at different distances. 

 
Metric ad pl nb bb 

𝐻0𝑙 𝐻(𝜂0 − 𝜒)𝑙ad 𝐻0𝑙pl 
3𝐻0 − 𝐻(𝜂0 − 𝜒) 

𝑙nb 
2 

[2𝐻0 − 𝐻(𝜂0 − 𝜒)]𝑙bb 

 

The acceleration of the cosmological expansion is determined by the first equation in (12): 
 

𝑣  = 𝑙  = 
d2  

0 
0 𝑎  4𝜋𝐺 2 𝑥

4−𝛽𝑥/2−1 

d𝑡2 𝑙H𝑎𝜒 = 𝑙H𝑎𝜒 = 
𝑎 
𝑙 = − 

3  
𝜌g𝑙 = 𝐻𝚲 𝑥4 𝑙. (50) 

As already mentioned, in the gravitational mass density 𝜌g = 𝜌d + 2𝜌r − 2𝜌𝚲 densities 𝜌d and 𝜌r decrease with 

increasing age of the universe, while 𝜌𝚲 = 𝜌0 . Therefore, in the numerator of the last fraction in (50), the relative 

importance of the first term increases with time. At the present time (𝑥 = 𝑥0), the gravitational mass density is negative: 
𝜌0 = 𝜌0 + 2𝜌0 − 2𝜌0 = −1.0677 ⋅ 10−29 g/cm3, so that the expansion occurs with an acceleration. But the acceleration 

g d r 𝚲 

at the current Hubble distance (speed equal to the speed of light) is only 

𝑣 0 = − 
4𝜋𝐺 

𝜌0𝑙0 = 
𝐻0𝑐 

(2Ω0 − Ω0 − 2Ω0 ) = 
H 3 g H 2 𝚲 d r𝑣 

3.94 ⋅ 10−8 cm/s2 ≈ 4 Å/s2. (51) 

In the distant future at 𝑡 → ∞ (𝜂∞ = 4.4514) 

1 Ω0  1/3 

𝑎 = 
1+𝑧 

∼ ( d ) 
𝚲 

𝑒𝐻𝚲𝑡 = 0.46000 𝑒𝐻𝚲𝑡, 

𝑥 ∼ 4.0520 𝑒𝐻𝚲𝑡,  𝜂 ∼ 𝜂∞ − 2.5619𝑒−𝐻𝚲𝑡. (52) 

Thus, the scale of the universe will increase exponentially, so that a second inflation will take place, which we will discuss 

in more detail later. However, according to (52), an exponential expansion will really begin only at 𝑡 ∼ 𝑡𝚲 = 1/𝐻𝚲. The 



Journal of Advance Research in Applied Science (ISSN 2208-2352) 

Volume-11 | Issue-01 | Apr, 2025 31 

 

 

d 

time scale is 1 
𝐻0 
𝑐 

= 4.4081 ⋅ 1017s = 13.969 Gyr , 𝑡𝚲 

𝑙0 

= 1/𝐻𝚲 = 5.1950 ⋅ 1017s = 16.462 Gyr . We also define the 

distance 𝑙𝚲 =  

𝐻𝚲 
=  H  = 1.5574 ⋅ 1028cm = 5.0473 Gpc. 

0 
𝚲 

The speed of expansion of space at the Hubble distance is, by definition, equal to the speed of light. The velocity 

of recession of the Hubble distance is derived using equation (15): 
𝑙   = 

d 𝑐 
= − 

𝑐 
𝐻  = 

𝑐 
(𝐻2 + 

4𝜋𝐺 
𝜌 ) = 

H d𝑡 𝐻 
 

𝐻2 𝐻2 3 g 

 

𝑐 (1 + 
1 𝜌g

) = 
𝑐  4+3𝛽𝑥 

. (53) 
2 𝜌𝔀 2 1+𝛽𝑥+𝑥4 

According to this formula, at the beginning of the expansion the velocity is close to the two speeds of light, decreasing 

with time, and in the distant future it will approach zero. Acceleration at the Hubble distance increases with time, but 

remains finite: 
 

𝑣   = − 
4𝜋𝐺 

𝜌 𝑙 
 

4 

= − 
4𝜋𝐺 

𝜌 
𝑐 

= 𝐻 𝑐 
𝑥 −𝛽𝑥/2−1 

→ H 3 g H 3 g 𝐻 𝚲  
𝑥2√1+𝛽𝑥+𝑥4 

 
𝐻𝚲𝑐 = 5.77Å/s2. (54) 

Acceleration of the distance itself is negative: 

 

𝑙   = − 
𝑐 𝐻𝚲 𝛽+16𝑥3+9𝛽𝑥4 

∼ −𝑐𝐻 
9 𝛽 

. (55)   

H 2 𝑥 (1+𝛽𝑥+𝑥4)3/2 𝚲 2 𝑥3 

 
From these formulas it is clear that the accelerations are of the same order as the product of the speed of light and the 
current Hubble constant, or the asymptotic value of the Hubble parameter: 𝑐𝐻0 = 3 ⋅ 1010 ⋅ 2.27 ⋅ 10−18 = 6.81 ⋅ 
10−8 cm/s2, 𝑐𝐻𝚲 = 5.77 ⋅ 10−8 cm/s2 (which coincides with the limit of (54)). 

EVOLUTION OF REDSHIFT AND APPARENT LUMINOSITY 
As mentioned above, the scale factor 𝑎 , and therefore the redshift 1 + 𝑧 = 1/𝑎 are tied to the epoch of 

observation. Therefore, the value of 𝑧 for each sufficiently distant object should change with increasing age of the 

universe. Therefore, luminosities of objects should change as well. A. Sandage drew attention to this problem. He 

calculated the changes for the model of “dust” with different values of Ω0 ([36]). In the Appendix [37] to the paper [36], 

McVittie made the same calculations while adding a cosmological term. Later A. Loeb [38] (apparently independently) 

proposed to determine changes in the redshift 𝑧 of quasars using observations of the 𝐿𝛼-forest with the 10-meter Keck 

telescope. He also transformed these changes into changes of the velocities of radiating objects. Such changes are known 
as the Sandage-Loeb effect. 

Let us find the dependence of the change of 𝑧 on the age of the universe according to the Standard model. Since 

for this relation the dependence of the radius of curvature on time is significant, we will write 𝑅(𝑡) without changing the 

notation. The redshift of lines in the spectrum of some object at a location corresponding to time 𝑡 = 𝑡(𝜂) from the 

beginning of the expansion, and observed at a position corresponding to the fixed time 𝑡0 = 𝑡(𝜂0), is determined by the 

well known formula 1 + 𝑧 = 𝑅(𝑡0)/𝑅(𝑡). Then 𝑧 is uniquely related to time 𝑡, and equal to 0 at the observer’s location, 

𝑧 = 0. For the complete definition of 𝑧, both times should be specified as arguments, i. e., 𝑧(𝑡, 𝑡0). However, this is 

traditionally not done, since the epoch of 𝑡0 is fixed; in the past 𝑧 > 0 and in the future −1 < 𝑧 < 0 with respect to 𝑡0. 

At this point we adopt a more detailed designation. 

After some time has passed, the age of the universe has increased and the epoch to which redshifts are attached 

has moved to the moment 𝑡′ = 𝑡(𝜂′ ). Then an object at a given redshift has moved to time 𝑡′ = 𝑡(𝜂′) without changing 0 0 

its spatial coordinate 𝜒. A connection between the moments of emission of radiation and its reception by the observer 

does not change in terms of the conformal coordinates, and the difference between the times of the observer and the object 

is preserved: 

𝜒 = 𝜂′ − 𝜂′ = 𝜂0 − 𝜂,  𝜂′ − 𝜂0 = 𝜂′ − 𝜂. (56) 
0 0 

In particular, the infinitesimal displacements are equal as well: d𝜂0 = d𝜂. ssing the relation 𝑐d𝑡 = 𝑅(𝑡)d𝜂 at times 𝑡 
and 𝑡0, we obtain the relation between the differentials of time and the derivative of one with respect to the other: 

√Ω 
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bb 

bb 

d𝑡  = 
𝑅(𝑡0) 

d𝜂  = 
𝑅(𝑡0) 

d𝜂 = 
𝑅(𝑡0)  𝑐  

d𝑡 = 
𝑅(𝑡0) 

d𝑡, 0 𝑐 0 𝑐 𝑐  𝑅(𝑡) 𝑅(𝑡) 

 
d𝑡 

= 
𝑅(𝑡) 

=  
1  

. (57) 
d𝑡0 𝑅(𝑡0) 1+𝑧 

The last relation between the passage of time of the object and the observer has already been used in section 3.5 for the 

transformation from a parallactic distance to a distance measured according to the flux of photons. 

To detect changes of 𝑧, one must measure shifts of lines in the spectrum of a source (with the same value of the 

𝜒 coordinate) at different times. The difference between the times should be much smaller than the times themselves, so 

increments of values can be replaced by their differentials (infinitesimally small), and it is sufficient to determine the 

derivatives of the variables. ssing (57) we find: 

 
d𝑅(𝑡) 

= 
d𝑅(𝑡) d𝑡 

= 𝑅 (𝑡) 
𝑅(𝑡) 

,  
d𝑅(𝑡0) 

= 𝑅 (𝑡 ). (58)     

 

From the latter we obtain ([36]) 

d𝑡0 d𝑡 d𝑡0 𝑅(𝑡0) d𝑡0 
0 

 
d𝑧 

= 
d(1+𝑧) 

= 
d 𝑅(𝑡0) 

= 
𝑅 (𝑡0) 

− 
𝑅(𝑡0) 

𝑅 (𝑡) 
𝑅(𝑡) 

= 
d𝑡0 d𝑡0 d𝑡0 𝑅(𝑡) 𝑅(𝑡) 𝑅2(𝑡) 𝑅(𝑡0) 

 𝑅 (𝑡0) 𝑅(𝑡0) 
− 

𝑅 (𝑡) 
= 𝐻 (1 + 𝑧) − 𝐻. (59) 

𝑅(𝑡0) 𝑅(𝑡) 𝑅(𝑡) 0 

The dependence of 𝐻 on 𝑧 is derived if 𝑥 is substituted by 𝑥0/(1 + 𝑧) in (37). 

A change in the redshift will result in a change in the observed luminosity of objects. The rate of change of the 

photometric distance in the current epoch, as follows from the equalities (24), (48) (its boundary parts 𝑙0 = 𝑙0(1 + 𝑧)) 

and (59), is equal (in accordance with Table IV) to: 
 

d𝑙0 d𝑧 
  bb = 𝑙 0(1 + 𝑧) + 𝑙0   = 𝐻0𝑙0(1 + 𝑧) + 𝑙0[𝐻0(1 + 𝑧) − 𝐻] = 
d𝑡0 d𝑡0 

 

(2𝐻 − 
𝐻 

) 𝑙0 . (60) 
 

Then 

0 1+𝑧  bb 

0 𝐿O d𝑙0 
𝐿0 d𝑙0 

0 𝐻 
𝐿  = − 2 0 bb = − 2  bb  bb = − 2𝐿 (2𝐻 − ) , 

bb 4𝜋(𝑙bb)3 d𝑡0 
0  d𝑡0 

bb 0 
 

1+𝑧 

 
1 d ln 𝐿0 

 bb = − 2 (2 − 
 

1  𝐻 
 
) . (61) 

𝐻0  d𝑡0 1+𝑧 𝐻0 

Figure 2 (for brevity, the derivative d𝑧/d𝑡0 is denoted by 𝑧 ) presents the dependencies of 𝑧 /𝐻0 and ratio 

𝑧 /[𝐻0(1 + 𝑧)] on the (current) redshift 𝑧. First, the speed 𝑧  is positive, i. e., 𝑧 increases; at 𝑧 = 2.34 the derivative 𝑧  
becomes zero. Between two zeros (at 𝑧 = 0 and 𝑧 = 2.34) at the point 𝑧 = 1.06 there is a maximum equal to 0.280. 

The redshifts of more distant objects (𝑧 > 2.34) decrease; moreover, the rate of decrease grows rapidly with recession 

(increasing 𝑧): 𝑧 /𝐻0 is equal to −0.98, −1.8, −8.4, −30 at 𝑧 = 4, 5, 10, 20 respectively. For the ratio 𝑧 /[𝐻0(1 + 
𝑧)], the growth is less pronounced. The derivatives 𝑧  and 𝑧 /(1 + 𝑧) are equal to zero at the same points, and 𝑧 /(1 + 𝑧) 
reaches the maximum at 𝑧 = 0.726 that is smaller than the maximum of 𝑧 . 

𝑙 
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FIG. 2: Changes in redshift and luminosity as a function of 𝑧. 
 

 

Figure 2 also presents a graph of the dimensionless derivative of the logarithm of the apparent luminosity as a 

function of 𝑧. When 𝑧 = 0 this derivative equals −2, which reflects a decrease in the solid angle of the source at the very 

beginning of the source’s recession from the observer. At small 𝑧 the rate of decrease grows slightly; at 𝑧 = 0.726 it has 

maximum negative value, then decreases and becomes equal to zero at 𝑧 = 13.2. The apparent brightness of distant 

objects should increase with redshift at 𝑧 > 13.2. The effect is stronger for more distant objects, although it is unclear 

whether any radiating objects existed, since such redshifts correspond to times < 326 million years from the beginning 

of the expansion, less than a fraction 0.0238 of the current age of the universe. 

It is most convenient to measure changes in all of these quantities when observing the 𝐿𝛼 -forest, which 

corresponds to shifts of the 𝐿𝛼 line in the spectra of distant quasars due to gas clouds located along the path to them. 

These clouds can have peculiar radial velocities relative to the Hubble flow that can affect observed shifts of the line. 
However, values of these radial components most likely do not change significantly during the time between observations 
if they are separated within some decades up to hundred of years. The luminosities of objects do not change as well at 
least in average. 

Mespite the importance of this effect to test the theory, any possibility of observing it with modern instruments 

would require a very long time interval between observations, from hundreds to thousands years, since 𝜆(𝑡0)/𝜆(𝑡) = 1 + 
𝑧(𝑡, 𝑡0), then d𝜆0/𝜆0 = d𝑧/(1 + 𝑧), and 

 

d𝑡  = 
1  d𝑧/(1+𝑧)  

. (62)  

0 𝐻0 𝑧 /[𝐻0(1+𝑧)] 

For example, if we assume that the accuracy of measurements of a relative shift of lines is d𝜆/𝜆 = d𝑧/(1 + 𝑧) = 10−6 
−6 

then for 𝑧 = 4, as seen from Fig. 2, 𝑧 /[𝐻 (1 + 𝑧)] ≈ −0.2 and d𝑡 ∼ 14 ⋅ 109 ⋅ 
10 

= 3 ⋅ 103 yrs — a time interval 
0 0 0.2 

which is insignificant on cosmological scales but longer than a human lifetime. For large 𝑧, the accuracy of measuring the 

position of the lines is less, so that we would need major technological progress to pursue such a method. 

Liske [39] estimates the possibility to detect the shift of lines due to cosmological expansion in the spectra of 

various objects at different wavelengths for different cosmological models when telescopes with ultra-large mirrors (40– 

60 m) become available, as is planned for the 2020s. It is alleged that a 42-m telescope will be able to measure the shift 

with 4000 hour exposures separated by 40 yrs. The article also provides an overview of previous work on the question of 

changing redshift. 

THE SECOND INFLATION AND THE SECOND HORIZON 

VISIBLE AND INVISIBLE PARTS OF THE UNIVERSE 

According to the theory of cosmological inflation, near the very beginning of the evolution of the universe, space 

expanded exponentially. The standard theory, as follows from (52), predicts that a positive cosmological constant causes 
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an acceleration of space starting from a certain moment that leads to an exponential expansion, although at a much lower 

rate than during the first inflation. This new expansion generates a new concept: a second horizon. 

The equation of motion of a photon traveling to the observer (that is, to us) is 𝜒 = 𝜂0 − 𝜂; therefore, the place 

and time of its exit are related by the equality 𝜒e = 𝜂0 − 𝜂e < 𝜂0. So, the equation of motion can be rewritten as follows: 

𝜒 = 𝜒e + 𝜂e − 𝜂. Therefore, the distance from the observer to the approaching photon is 

𝑙rs = 𝑙0 𝑎(𝜂)(𝜒e + 𝜂e − 𝜂). (63) 

The parameter 𝜂 is limited. For 𝑡 = ∞, it is equal to 𝜂∞ = 4.4514. The distance can only equal zero, 𝑙rs = 0, if 𝜒e + 
𝜂e < 𝜂∞. Then there is another limitation on the ability to observe objects in the universe: along with the first horizon 

there is a second one. The concept of two horizons was introduced by V. Rindler [40] and discussed in a number of papers, 
for example, in [41]. Here their kinematic characteristics are derived within the Standard model. 

The first horizon is called geometric (we recall that the physical horizon is the sphere of last scattering at 𝑧 ≈ 
1000), while the second horizon can be called the kinematic or dynamic horizon. Other names are also used, borrowed 

from the terminology of the theory of black holes. The geometric horizon is called the particle horizon, and the kinematic 

horizon is called the event horizon. These names were introduced by Rindler. 

At an arbitrary epoch, 𝜂, the first and second horizons are determined by the equations 
 

𝜒GHor 

𝑎 

= 𝜂 = 𝐻0 ∫0 

d𝑎 
 

 

𝑎2𝐻 
= 𝜂∗𝐼0(𝑥, 𝛽), 

 

𝜒 = 𝜂 − 𝜂 = 𝐻 ∞ d𝑎 ∫ = 𝜂 [𝐼 (∞, 𝛽) − 𝐼 (𝑥, 𝛽)]. (64) 
KHor ∞ 0 𝑎 𝑎2𝐻 ∗  0 0 

 

 
 

FIG. 3: Visible and invisible parts of the universe. 

 
In Figure 3 positions of the geometric horizon are indicated on the ordinate axis. The lines corresponding to 

this horizon are parallel to the abscissa. They rise with time, reflecting expansion of the horizon. The second, kinematic 
horizon is shown by a straight line connecting the abscissa and the ordinate, which are equal to 𝜂∞, while its specific 

position corresponds to the time on the abscissa axis. The paths of photons coming toward us are represented by straight 
lines parallel to this straight line. Photons can start their journey from any point on the trajectory. Photons, for which 𝜂e + 
𝜒e < 𝜂∞, that is, moving along straight lines lying below the straight line specified above, sooner or later will reach a 
place where the observer is located. For example, Figure 3 shows the paths of photons that have reached our position at 
time 𝜂∗ < 𝜂0 and at the current epoch 𝜂0. If 𝜂e + 𝜒e > 𝜂∞, then photons with such coordinates never reach our location. 

According to the equality 𝜂e + 𝜒e = 𝜂∞, it would seem that the photon still must reach the observer at least over an 

infinite time, but even that is impossible. 

From behind the first horizon, the radiation has not yet reached the observer. The second horizon separates the 

region of times and locations from which radiation cannot reach the observer, since the photons coming from there are 
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moving away from the observer. This occurs because space expands at speeds higher than the speed of light, and these 

speeds increase with time. At the current time, we can see objects in the universe up to redshifts 𝑧 ≈ 10 , but this 

corresponds to the past. We will never see objects located now at redshifts 𝑧 ≥ 1.725. 

Indeed, if a photon is now emitted toward us from a place with coordinate 𝜒o, then the distance to it at moment 

𝜂 will be 𝑙pℎ = 𝑙0 𝑎(𝜂)(𝜒o + 𝜂0 − 𝜂). This distance can become equal to zero at 𝜂 = 𝜒o + 𝜂0, and it must be the case 

that 𝜒o + 𝜂0 < 𝜂∞. Thus, the boundary of the coordinate 𝜒o for photons emitted now is 𝜒0  = 𝜂∞ − 𝜂0 = 1.13. The 
values of 𝑥0  = 3.23, 𝑧0  = 1.725, and 𝑙0  = 4.84 Gpc = 𝑙0   correspond to this coordinate. The sphere of such a 

lim lim lim KHor 

radius is the current second horizon. Thus, the radiation from the points now located at distances of 4.84 Gpc from us 
will never reach us, even in the infinitely remote future. Figure 4 shows distances 𝑙rs to the photons arriving at the observer 

at the epoch when 𝜂 = 2 (Figure 4 left), and at the current epoch (Figure 4 right). In Figure 3 these distances are given as 
a function of values of 𝑥 for cases where the sum of the coordinates of time and location of the photon emission is equal 
to 𝜂∞ (Figure 5 left) and larger than that (Figure 5 right). These figures also show curves reflecting the relationship 

between the time 𝜂e and the location 𝜒e of the photon emission. 
 

 

FIG. 4. The paths of photons with arrival time at epochs: 𝜂 = 2 (left) and 𝜂0 = 3.3224 (right). 
 

FIG. 5. The paths of photons with “arrival” time at epochs: 𝜂∞ = 4.4514 (left) and 𝜂 = 5 (right). 

Generally speaking, if a photon is emitted at a point where the expansion speed is greater than the speed of light, 

this does not necessarily mean that it will not reach us. Cosmological expansion occurs in the same way with respect to 

all points of space, and it starts after a period of inflation with a very high speed (formally infinite, according to formula 

(37), which defines the Big Bang), although in the beginning the expansion was slowing down. A photon emitted from far 
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away, where the speed of expansion is large but closer than the horizon, still comes to us, because it gradually moves into 

layers of space expanding at a slower and slower rate. At some point its velocity toward us becomes zero, and then becomes 

negative, that is, it begins to approach us. However, it takes a long time for the photon to reach us. Consider, for example, 

a galaxy observed by us now at redshift 𝑧 = 3: according to Table II, it moves away from us with a speed of 𝐻0𝑙 = 𝑐𝑙  = 
1.51𝑐, and earlier its speed was greater. At the same time, its radiation traveled to us for 11.5 billion years, that is, we 

see this galaxy as it was in the distant past, when neither the Earth, nor even the Sun, existed (but the galaxies and stars of 

the previous generations had already formed). 

Figure 4 shows that the distance of a photon emitted sufficiently early at first increases, which means expansion 
with a speed greater than the speed of light, faster than the photon speed. From the point where the distance reaches a 
maximum, the photon begins to approach and finally arrives at our location. However, as shown in Figure 5, this is not 
possible if 𝜂e + 𝜒e ≥ 𝜂∞, even if the equality is true. Figure 5 left shows that a photon emitted at the second horizon, and 

which then travels along it, would not arrive at the observer after an infinite time; in fact, the photon only recedes along 
with the horizon. After an infinite time, such a photon will be at a distance 𝑙𝚲 ≈ 5.0 Gpc, since the factor 𝜂∞ − 𝜂 in the 

formula (63) at 𝜒e + 𝜂e = 𝜂∞ tends to zero if 𝑡 → ∞, while the factor 𝑎(𝜂) → ∞, but their product remains finite. A 

photon emitted at 𝜂e + 𝜒e < 𝜂∞ may, after a very long time, reach the current location of our civilization, but one emitted 

at 𝜂e + 𝜒e > 𝜂∞ will only recede from us, eventually exponentially fast. The reason for this is the accelerated expansion 

of space. Thus, galaxies located on the second horizon and behind it will forever disappear from our field of view. These 
statements follow from the formulas given below. 

DISTANCES, VELOCITIES, AND ACCELERATIONS OF HORIZONS 
Mistances to horizons at an arbitrary epoch 𝜂 according to equations (64) are defined by the formulas: 

 

𝑙GHor = 𝑙0 𝑎(𝜂)𝜂 = 𝑙𝚲𝑥𝐼0(𝑥, 𝛽), (65) 

𝑙KHor = 𝑙0 𝑎(𝜂)(𝜂∞ − 𝜂) = 𝑙𝚲𝑥[𝐼0(∞, 𝛽) − 𝐼0(𝑥, 𝛽)]. (66) 

The sum of the horizon conformal space coordinates is constant at all times, and the sum of the distances to them is 

proportional to the scale factor. Both horizons expand. The speed of the geometric horizon exceeds by the speed of light 
the velocity of the position where the horizon is located at time 𝑙 GHor = 𝑙0 𝑎 𝜂 + 𝑙0 𝑎𝜂  = 𝐻𝑙GHor + 𝑐. It expands at an 

H H 

accelerating rate. In contrast, the velocity of the kinematic horizon is less than the speed of its location by the speed of 
light: 𝑙 KHor = 𝑙0 𝑎 (𝜂∞ − 𝜂) − 𝑙0 𝑎𝜂  = 𝐻𝑙KHor − 𝑐, and its expansion slows down. 

H H 

Asymptotes of distances to horizons and their velocities at 𝑡 → ∞, 𝑎 → ∞, 𝑧 → −1 are determined by taking 
into consideration that 𝐼 (∞, 𝛽) = 0.42880 and 1 1 𝛽 

): 
0 𝐼0(∞, 𝛽) − 𝐼0(𝑥, 𝛽) ∼ 

𝑥 
(1 − 

8 𝑥3 

𝑙GHor ∼ 𝑙0 𝜂∗ 𝐼0(∞, 𝛽)𝑎 = 5.9 ⋅ 1028𝑎 cm ∼ 2.7 ⋅ 1028𝑒𝐻𝚲𝑡 cm → ∞, (67) 

 

𝑙KHor 

 

→ 
𝑐 

𝐻𝚲 
= 1.56 ⋅ 1028 cm = 5.05 Gpc. (68) 

The current distance to the geometric horizon is 𝑙0 = 𝑙0 𝜂0 = 3.32 𝑙0 = 4.39 ⋅ 1028 cm = 14.2 Gpc. The 
GHor H H 

velocity near the horizon is 𝑣0 = 𝑐𝜂0 = 3.32𝑐, and the velocity of the expansion of the horizon is 𝑙 0 = 4.32𝑐. The 
GHor GHor 

horizon will cross 4.32 light years in one year, which is equal to 1.33 pc, so that 1 Gpc will be added to the current 

14.2 Gpc in 0.755 ⋅ 109 years if the speed of the horizon is equal to its current velocity, and in 0.741 ⋅ 109 years if the 

increase of the velocity is taken into account. 
The current distance to the second horizon is 𝑙0 = 𝑙0 (𝜂∞ − 𝜂0) = 1.49 ⋅ 1028cm = 4.84 Gpc. The limit to 

KHor 

this distance coincides with the Hubble limit: 𝑙 →  
𝑙0  

= 
0 
𝚲 

H 
𝑐 

 
 

𝐻𝚲 
= 5.05 Gpc. The current speed of expansion of the 

location of this horizon is 𝑐(𝜂∞ − 𝜂0) = 1.13𝑐, and the speed of recession of the kinematic horizon from us is now 0.13𝑐. 

The velocities of the horizons at an arbitrary moment and their asymptotics for 𝑡 → ∞ and 𝑥 ∼ 5.0 ⋅ 𝑒𝐻𝚲𝑡 → ∞ 
are 

 

𝑙 GHor = 𝑙0 (𝑎 𝜂 + 𝑎𝜂 ) = 𝐻𝑙GHor + 𝑐 = 

 
 

√1+𝛽𝑥+𝑥4 

𝑐 [ 
𝑥 

𝐼0(𝑥, 𝛽) + 1] ∼ 𝑐𝑥𝐼0(∞, 𝛽), (69) 

√Ω 
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𝑙  
√1+𝛽𝑥+𝑥4 3 𝛽 

KHor = 𝑐 [ 
𝑥 

[𝐼0(∞, 𝛽) − 𝐼0(𝑥, 𝛽)] − 1] ∼ 
8 𝑥3 𝑐. (70) 

 

It is interesting to note that all points with fixed coordinate 𝜒 begin (at the initial instant of the expansion) to move away 

from each other at an infinite speed (according to (37), 𝑎  = 𝑥 /𝑥0 = (𝐻𝚲/𝑥0)√1 + 𝛽𝑥 + 𝑥4/𝑥). The geometric horizon 

begins to expand with velocity 2𝑐, as does the Hubble distance, but the evolution of their velocities is opposite (see 

formulas (53) and (67)). For small 𝑥, the velocity 𝑙 GHor grows very fast, while the velocity 𝑙 H rapidly decreases, so that 

at 𝑥 = 0.03 they become equal to 2.50𝑐 and 1.56𝑐, respectively. The second horizon begins the expansion, as do all 
ordinary points of space, with an infinite speed, which decreases very rapidly. 

Accelerations have similar evolution: 
 

𝑙  = 𝑙0 (𝑎 𝜂 + 2𝑎 𝜂  + 𝑎𝜂 ) = 
𝑎  
𝑙 

 

+ 𝑙0 (2𝑎  
𝐻0 − 𝑎 

𝐻0 𝑎 ) = − 
4𝜋𝐺 

𝜌 𝑙 
   

+ 𝑐𝐻 = 
GHor H 𝑎 GHor H 𝑎 𝑎2 3 g GHor 

√1+𝛽𝑥+𝑥4 𝑥4−𝛽𝑥/2−1 = 𝑐𝐻 [ + 𝐼 (𝑥, 𝛽)] ∼ 𝑐𝐻 𝐼 (∞, 𝛽)𝑥, (71) 
𝚲 

 

 𝑙  0 [ 

𝑥2 𝑥3 0 

 

] 
𝑎  

𝚲 0 
 

 
0 

 

 
𝐻0 

 

 
𝐻0 

KHor = 𝑙H 𝑎(𝜂∞ − 𝜂) − 2𝑎𝜂 − 𝑎𝜂  = 
𝑎 
𝑙KHor − 𝑙H (2𝑎 

𝑎 
− 𝑎 

𝑎2 𝑎) = 

= − 
4𝜋𝐺 

𝜌 𝑙0 𝑥 𝐼0(∞,𝛽)−𝐼0(𝑥,𝛽) 
− 𝑐𝐻 =   

3 g H 𝑥0 (Ω0Ω0 )1/4 
r  𝚲 

4 4 
= 𝑐𝐻 [

𝑥 −𝛽𝑥/2−1 
[𝐼 (∞, 𝛽) − 𝐼 (𝑥, 𝛽)] − 

√1+𝛽𝑥+𝑥 
] ∼ − 

9 𝛽 
𝑐𝐻 . (72) 

𝚲 𝑥3 0 0 𝑥2 8 𝑥3 𝚲 

 

At 𝑥 = 𝑥0 , we obtain the current values of the velocities (see above) and accelerations: 𝑙 0 = 3.45𝐻𝚲𝑐 = 19.9 ⋅ 

10−8 cm/s2, 𝑙 0 = −1.95 𝐻𝚲𝑐 = −11.3 ⋅ 10−8 cm/s2. 

The speed of the first horizon increases, while that of the second horizon decreases. Muring the entire period of 

action of the cosmological acceleration (6.5 ⋅ 109 years), the velocity of the first horizon increased from 3.31 𝑐 (by the 

value of 𝜂 for 𝜌g = 0 in Table I) to the current velocity of 4.32 𝑐, and the speed of the second horizon decreased from 

0.479 𝑐 to 0.129 𝑐. 
 

 

FIG. 6. Left: Hubble distance and distances to the horizons in Gpc. Right: Speeds of change of distances in units of the 

speed of light. 

 
Figure 6, left presents the distances to the horizons, and Figure 6, right shows their velocities as a function of the 

parameter 𝑥. The figures give the same values for the Hubble distance. All distances are given in Gpc, and velocities are 
indicated in units of the speed of light. At first, until 𝜂∞ − 𝜂 > 𝜂, the distance to the second horizon is greater than that 

to the first horizon. The horizons intersected when 𝜂crs = 𝜂∞/2 = 2.23, 𝑥crs = 4.08, 𝑧crs = 1.677 at an epoch 𝑡crs = 
3.93 billion years from the beginning, that is 𝑡0 − 𝑡crs = 9.80 billion years ago (earlier than the acceleration began), 
when the distance to the horizons was 3.58 Gpc. Prior to this, the first horizon determined the initial possibility to make 
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observations (if there were observers at that time). Since then, the second horizon has become closer. Note, however, that 

the horizon effects differ. The first horizon (in fact, not it, but the physical horizon) limits the spherical region of space in 

which one can observe the past history of the universe, while the second defines those areas of information that will never 

reach the observer. 

 

 

 

FIG. 7. Left: Accelerations of the horizons and the Hubble distance. Right: Values of 𝑎 and 𝑡 as functions of 𝑥. 

 
Figure 7, left plots the accelerations of the horizons and Hubble distance, measured in units of 𝑐𝐻𝚲 , on a 

logarithmic scale. Only the acceleration of the second horizon is a monotonic function; 𝑙 GHor has a minimum, while 𝑙 H 

has both a minimum and a maximum. The figures show a linear increase of the acceleration 𝑙 GHor with 𝑥, and the equality 

of the rates of decrease of the accelerations 𝑙 H and 𝑙  according to the asymptotes (55) and (72). Figure 7, right shows 

the relationship of the scale factor 𝑎 and cosmological time 𝑡 with the parameter 𝑥. 

 

CONNECTION WITH EXTRATERRESTRIAL CIVILIZATIONS 
Suppose that at the current epoch (𝑡 = 𝑡0, 𝜂 = 𝜂0) humans emit a radio signal in some direction. The distance to 

it increases; for a value of the time coordinate 𝜂 the distance will be equal to 𝑙ph = 𝑙0 𝑎(𝜂)(𝜂 − 𝜂0), 𝜂 ≥ 𝜂0. Its speed 

includes both the speed of expansion and the speed of light: 

 
𝑙 ph = 𝑙0 𝑎 (𝜂 − 𝜂0) + 𝑙0 𝑎𝜂  = 𝐻𝑙ph + 𝑐. (73) 

H H 

For brevity, we omit the factor 𝑙0 , which means that we use distances measured in units of the modern Hubble distance. 

On the way, the signal passes by objects with fixed spatial coordinates 𝜒O = 𝜂0 − 𝜂O. Mistances to these objects grow 

only due to the cosmological expansion, that is, increasing scale factor: 𝑙 O = 𝑎(𝜂)(𝜂0 − 𝜂O). The signal catches up with 

these objects when their distances from us become equal, which occurs at the moment 𝜂mt, when 𝜂mt − 𝜂0 = 𝜂0 − 𝜂O, 

𝜂mt = 2𝜂0 − 𝜂O; therefore, 𝑙 ph = 𝑙 O = 𝑎(2𝜂0 − 𝜂O)(𝜂0 − 𝜂O). Since 𝜂mt cannot exceed 𝜂∞, the signal can meet for a 

finite (although, perhaps, very large) time only those objects whose coordinate satisfies 𝜒O < 𝜂∞ − 𝜂0 = 1.13. This 

implies that the coordinate has the same boundary as a photon traveling toward us. This boundary is the second horizon 
(see above), and 𝜂O > 𝜂lim = 2𝜂0 − 𝜂∞ = 2.19. 

H 
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FIG. 4. Left: Path of the signal to objects. Right: Objects reachable by the signal. 

Table V. Objects along the signal path. 

 

𝜂O 𝑥O 𝑎O 𝑧O 𝑙0 Gps 
O 𝑡O 

1.99 2.67 0.303 2.30 5.69 2.89 
2.19 3.23 0.367 1.73 4.84 3.83 
2.39 3.87 0.440 1.28 3.98 4.95 
2.59 4.60 0.523 0.913 3.12 6.29 
2.79 5.46 0.620 0.613 2.27 7.88 
2.99 6.49 0.737 0.357 1.41 9.77 

 

 
Figure 8, left contains lines that plot the dependence of the distance 𝑙O on the coordinate 𝑥 up to six objects. 

Positions of the signal path and the kinematic horizon are indicated as well. The objects are characterized by values of 
𝜂O = 𝜂lim + 0.2𝑛, 𝑛 = −1(1)4. The corresponding values of 𝑥O, the scale factor 𝑎O = 𝑎(𝜂O), and the redshift 𝑧O, as 

well as the current distances to these objects 𝑙0 , are given in Table 5. It can be seen from the figure that the emitted signal 
reaches the objects only when 𝑛 = 1, 2, 3, 4. The signal comes earlier to objects with larger values of 𝜂O, and hence 

smaller values of 𝑧O and 𝑙O. These objects are located closer to the position of the signal output at the moment of its 

emission. The signal only catches up to objects with 𝑛 = 3 and 4, for which the values of 𝜂O are equal to 2.79 and 

2.99, respectively, before they cross the second horizon. The condition of this is 𝜂0 − 𝜂O < 𝜂∞ − 2𝜂O + 𝜂O, that is, 𝜂O > 

𝜂h = 
3𝜂0−𝜂∞ = 2.758. The distance between the object, which is now almost on the second horizon (the current distance 

2 

to it is 4.84 Gpc and its redshift is 1.72), and the signal for 𝑙 0 = 𝜂∞ − 𝜂0 − 𝜀, 𝜂O = 𝜂lim + 𝜀 is 

𝑙O − 𝑙ph = 𝑙0 𝑎(𝜂)(𝜂0 − 𝜂lim − 𝜀) − 𝑙0 𝑎(𝜂)(𝜂 − 𝜂0) = 
H H 

 

𝑙0 𝑎(𝜂)(𝜂  − 𝜀 − 𝜂) ∼ 
 𝑐 𝜂∞−𝗌−𝜂, (74) 

H ∞ 𝐻𝚲 𝜂∞−𝜂 

 

since, according to eqs. (38) and (41), 𝜂 ∼ 𝜂∞ − 𝜂∗/𝑥, 𝑎(𝜂) = 𝑥/𝑥0 ∼ 1/ [√Ω0 (𝜂∞ − 𝜂)] for 𝑥 → ∞, 𝜂∞ − 𝜂 ≪ 1. 

The difference (74) tends to zero for 𝜂 → 𝜂∞ − 𝜀 if 𝜀 > 0. Thus, in agreement with Figure 8, left, the signal will still 

reach a given object if the object is located at least slightly closer than the second horizon. The time that the signal needs 
to meet the object is 𝑡 ∼ ln(1/𝜀). If the object is located on the horizon (𝜀 = 0), there remains an insurmountable distance 

𝑐/𝐻𝚲 = 5.05 Gpc. The distance between the signal emitted now and objects currently located behind the second horizon 

will only increase with time. In addition, it will increase asymptotically as an exponential function. These objects are 
carried away by the exponential expansion, that is, by the repulsion of the dark energy. In models without repulsion the 
second horizon does not appear. 

Figure 8, right shows the dependences of the coordinates 𝑥O, 𝜂O and 𝜒O = 𝜂0 − 𝜂O, as well as redshifts 𝑧O of 

objects that the signal will reach at the time corresponding to its coordinate 𝑥. The figure plots also the dependence of the 
time coordinate 𝜂 on 𝑥. The signal emitted now will reach the second horizon when 
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𝑙ph = 𝑙0 𝑎(𝜂h)(𝜂h − 𝜂0) = 𝑙KHor = 𝑙0 𝑎(𝜂h)(𝜂∞ − 𝜂h), 
H 

 

𝜂h 

H 

 

= 
𝜂0+𝜂∞ = 3.89. (75) 

2 

The corresponding values are 𝑥h = 18.3, 𝑙ph = 𝑙KHor = 5.02 Gpc, and 𝑡h = 24.9 Gyr. At this time an object with initial 

coordinate 𝑥O = 5.30 will approach the horizon. This coordinate corresponds to 𝑎O = 0.601, 𝑧O = 0.663, and an initial 
distance to us of 𝑙0 = 𝑙0 (𝜂0 − 𝜂O) = 1.45 Gpc, because if 𝑙O = 𝑙ph = 𝑙KHor then 𝜂0 − 𝜂O = 𝜂h − 𝜂0 = 𝜂∞ − 𝜂h and 

O H 

𝜂O = (3𝜂0 − 𝜂∞)/2 = 2.76. 
The signal sent by us can reach distances only up to ≈ 5 Gpc to have any hope to get a reply. Exponential 

expansion of space entrains radiation both going away from us and directed toward us. Nevertheless, 5 Gpc is a very 

large distance, and inside the sphere of such a radius there are many galaxies. If the signal hits a planet populated by 

intelligent creatures who have reached an advanced stage of civilization, they can receive it, understand, determine the 

direction from what it came, and reply. Then their signal will approach that place where humans were when we sent the 

first signal. The distance of their signal to us will change according to the formula 𝑙 ret = 𝑎(𝜂)(𝜂mt − 𝜂0 − 𝜂) = 
𝑎(𝜂)(𝜂0 − 𝜂O − 𝜂) = 𝑎(𝜂)(3𝜂0 − 2𝜂O − 𝜂). Any reply will arrive at Earth at time 𝜂ret = 3𝜂0 − 2𝜂O. If we want a reply 
to arrive at time 𝜂0 , 𝜂0 < 𝜂0  < 𝜂∞ , then such a civilization should have 𝜂O > (3𝜂0 − 𝜂0 )/2 and 𝜒O < (𝜂0  − 

ret ret ret ret 

𝜂0)/2. In an extreme case, if we assume that 𝜂0 = 𝜂∞, then the condition 𝜂ret < 𝜂∞ imposes a restriction on the 

coordinate 𝜂O : 𝜂O > (3𝜂0 − 𝜂∞)/2 . This restriction coincides with the condition that the signal reaches the object 
(civilization) before the latter reaches the second horizon. The restriction on the spatial coordinate is as it was previously: 

𝜒𝑂 = 𝜂0 − 𝜂𝑂 < (𝜂∞ − 𝜂0)/2. 
It is clear that it makes sense to send a signal to objects located closer than several dozen light years, otherwise 

any possible reply would take too long. sndoubtedly, it will be necessary to limit the search within our Galaxy and even 

the immediate vicinity of the solar system. Even in this case the signals must either be sent in a very narrow cone, or they 

should be sufficiently energetic so that they can be received at a greater distance. 

Although the above arguments have a purely theoretical or even academic character, they establish restrictions 

on the limits imposed by the model. They can be related either to epochs when our civilization on the Earth has not existed 

yet, or has not been able to realize connections with other civilizations, or to the epochs when the Sun and Earth will no 

longer exist in their current form. However, these same arguments apply to any arbitrary location in the universe and to 

civilizations that may arise and prosper at any time. 

 

CONCLUSION 
In this paper we have summarized results of the Standard model that reveal some of its quantitative properties. 

After a brief excursion into the history of creation of cosmological models, we have presented the two Friedmann-Lemaître 

equations, which describe a uniform and isotropic universe, and have restated the definitions of the critical values and five 

cosmological distances. Based on the compatibility condition of two equations and on the equations of state, we have 

derived the laws of the change with time of the mass density of four noninteracting components: the density of matter 

decreases as the third order of the scale factor and the density of radiation and neutrinos as the fourth order, while the dark 

energy density is unchanged. These laws provide solutions of the cosmological equations in quadratures. 

The equations are specified for the flat space-time model. ssing the parameters of this model obtained from 

observations: Hubble constant, 𝐻0 = 70 km/s/Mpc, temperature of the cosmic background radiation, 𝑇0 = 2.7727 K, 

dark energy fraction of the total cosmological mass density, Ω0 = 0.72, we have determined the current Hubble distance 

𝑙0 = 4.28 Gpc, the critical density 𝜌c = 9.2 ⋅ 10−30 g/cm3, and the fractional contributions to 𝜌c of the radiation, 5 ⋅ 
10−5 , six types of neutrinos 6.9 ⋅ 10−5 , and dust-like matter, ≈ 0.28, which includes dark matter. They define the 
relationships of the scale factor 𝑎 = 1/(1 + 𝑧) (and, thus, of the redshift 𝑧), the conformal dimensionless time coordinate 

𝜂, and the dimensionless parameter 𝑥 with cosmological time 𝑡. For the early and late stages of expansion, simple and 

sufficiently accurate approximations of these relationships have been obtained. We have shown that, in contrast to redshift, 

coordinates 𝜂 and 𝑥 are not tied to a specific epoch of evolution. Several dimensionless parameters of the model have 

been introduced that are also free from such binding, and their quantitative values have been derived. 

It has been shown that major events in the evolution of the universe occurred near the beginning, when the 

dominant carrier of the mass density transferred from radiation and neutrinos to “dust” — corresponding to 𝑧 changing 

from 5500 to 1000 — and then later when dark energy became dominant, at 𝑧 = 0.7 to 0.4. 

Mependencies of different types of distances have been calculated as functions of parameters 𝑥 and 𝑧, as well as 

speeds of their changes. A difference between the cosmological redshift and classical Moppler effect was stressed, which 

was explained by the fact that a shift of the frequency of a photon occurs not only at the time of its emitting by a cosmical 

object, but at every point of its path to the observer. 

We have discussed the concepts of two horizons: geometric, inherent in any expanding model, and kinematic, 

typical for models expanding with an acceleration. Mistances to these horizons, along with speeds and accelerations of 
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evolution of these distances, have been derived as functions of time. Current distances to the horizons are 14.2 Gpc for 

the first horizon and 4.84 Gpc to the second horizon. The horizons crossed each other 9.8 Gyr ago, when the distance to 

them was 3.58 Gpc. 

The current acceleration of expanding space represents the most surprising value: at the Hubble distance, where 

the expansion rate is equal to the speed of light, the acceleration is about 4 Å/s2. Such a value of the acceleration has been 

reached over the past 6.5 billion years, while it was zero at the beginning of the expansion. A limit on the acceleration 

for 𝑡 → ∞ at the limit of the Hubble distance is 5.7 Å/s2. Even at the current horizon the acceleration is only slightly 

higher, ≈ 20 Å/s2. However, tens of billions of years into the future, the acceleration of the horizon and scale factor 

(indeed, all scales) will increase over time exponentially with an exponent of 𝑡/𝑡𝚲, where 𝑡𝚲 = 16.5 Gyrs. This means 
that a second inflation will occur. 

We have estimated the rate of change of redshifts and apparent luminosities of objects with increasing age of the 

universe. For distant objects with 𝑧 > 13.2, the apparent luminosity can grow with time. However, detection of these 

effects requires very long time intervals between observations, as well as significant improvements in the capabilities of 

observational instruments in the future. 

We have estimated distances across which our signal emitted from the Earth can reach extraterrestrial 

civilizations and from which they can respond to us. These distances are quite large, on the order of 5 Gpc, so that they 

do not limit the possibilities of contact with other civilizations in the universe. 

The above discussion provides a quantitative description of various geometric and kinematic properties of the 

Standard model that is currently considered to be an accurate description of the universe. Future observationally driven 

revisions of the cosmological parameters such as the Hubble constant would require updates to the exact values of the 

parameters that we have derived. Nevertheless, as long as the cosmological constant dominates the current and future 

energy of the universe, seemingly odd features, such as the presence of two horizons, will remain intact. 
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